Background visual motion affects responses of an insect motion‐sensitive neuron to objects deviating from a collision course
نویسندگان
چکیده
Stimulus complexity affects the response of looming sensitive neurons in a variety of animal taxa. The Lobula Giant Movement Detector/Descending Contralateral Movement Detector (LGMD/DCMD) pathway is well-characterized in the locust visual system. It responds to simple objects approaching on a direct collision course (i.e., looming) as well as complex motion defined by changes in stimulus velocity, trajectory, and transitions, all of which are affected by the presence or absence of background visual motion. In this study, we focused on DCMD responses to objects transitioning away from a collision course, which emulates a successful locust avoidance behavior. We presented each of 20 locusts with a sequence of complex three-dimensional visual stimuli in simple, scattered, and progressive flow field backgrounds while simultaneously recording DCMD activity extracellularly. DCMD responses to looming stimuli were generally characteristic irrespective of stimulus background. However, changing background complexity affected, peak firing rates, peak time, and caused changes in peak rise and fall phases. The DCMD response to complex object motion also varied with the azimuthal approach angle and the dynamics of object edge expansion. These data fit with an existing correlational model that relates expansion properties to firing rate modulation during trajectory changes.
منابع مشابه
Looming detection by identified visual interneurons during larval development of the locust Locusta migratoria.
Insect larvae clearly react to visual stimuli, but the ability of any visual neuron in a newly hatched insect to respond selectively to particular stimuli has not been directly tested. We characterised a pair of neurons in locust larvae that have been extensively studied in adults, where they are known to respond selectively to objects approaching on a collision course: the lobula giant motion ...
متن کاملA looming-sensitive pathway responds to changes in the trajectory of object motion.
Two identified locust neurons, the lobula giant movement detector (LGMD) and its postsynaptic partner, the descending contralateral movement detector (DCMD), constitute one motion-sensitive pathway in the visual system that responds preferentially to objects that approach on a direct collision course and are implicated in collision-avoidance behavior. Previously described responses to the appro...
متن کاملHabituated visual neurons in locusts remain sensitive to novel looming objects.
Many animals must contend with visual cues that provide information about the spatiotemporal dynamics of multiple objects in their environment. Much research has been devoted to understanding how an identified pair of interneurons in the locust, the Descending Contralateral Movement Detectors (DCMDs), respond to objects on an impending collision course. However, little is known about how these ...
متن کاملResponses of a looming-sensitive neuron to compound and paired object approaches.
The lobula giant movement detector (LGMD) and its target neuron, the descending contralateral movement detector (DCMD), constitute a motion-sensitive pathway in the locust visual system that responds preferentially to objects approaching on a collision course. LGMD receptive field properties, anisotropic distribution of local retinotopic inputs across the visual field, and localized habituation...
متن کاملLoom-Sensitive Neurons Link Computation to Action in the Drosophila Visual System
BACKGROUND Many animals extract specific cues from rich visual scenes to guide appropriate behaviors. Such cues include visual motion signals produced both by self-movement and by moving objects in the environment. The complexity of these signals requires neural circuits to link particular patterns of motion to specific behavioral responses. RESULTS Through electrophysiological recordings, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2016